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ABSTRACT 

Let A be an abelian variety defined over a number  field K.  Assume tha t  

the Tate-Shafarevich group is finite. We prove that  the condition that  

the topological closure of A(K) in YIveM~ A(Kv) is open is equivalent to 

the condition that  the Brauer-Manin  obstruct ion is the only obstruct ion 

to weak approximation. 

1. Introduct ion  

Colliot-Thdlbne and Sansuc [4] gave the first example of the failure of weak ap- 

proximation for a Del Pezzo surface of degree 4 and pointed out that  the Brauer-  

Manin obstruction [7] is responsible for most known conterexamples to weak ap- 

proximation. Let V be a smooth algebraic variety defined over a number field K 

with V ( K )  ~t 0. If the Brauer-Manin obstruction to weak approximation is the 

only obstruction for V (Definition 2.1), then the topological closure of V ( K )  in 

I-IveM~ V(Kv)  is open, in particular, the K-rational points are Zariski dense in 

V (Lemma 2.3). 

In this paper, we show that the converse is true for abelian varieties under the 

standard assumption that  the Tate-Shafarevich group is finite. 
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THEOREM 1.1: Let A be an abelian variety defined over K. Assume that the 

topological closure of A(K) in l-IvEM~ A(K,)  is open. If the Tate-Shafarevich 

group is finite, then the Brauer-Manin obstruction to weak approximation is the 

only obstruction. 

When a variety is defined over Q, Mazur made the following conjecture [9]. 

CONJECTURE 1.2 (Mazur): Let V be a smooth algebraic variety defined over Q 

whose rational points V(Q) are Zariski dense in V. Then the topological closure 

of V (q )  in V(R) is open. 

This conjecture together with Theorem 1.1 implies the following result. 

PROPOSITION 1.3: Let A be an abelian variety defined over Q whose rational 

points are Zariski dense. Assume that Conjecture 1.2 is true for A and that the 

Tate-Shafarevich group is finite. Then the Brauer-Manin obstruction to weak 

approximation is the only obstruction for A. 

COROLLARY 1.4: Let A be a simple abelian variety of dimension d which is 

defined over Q. Suppose the Morde11- Weil rank of A is at least d 2 - d+ 1. If the 

Tate-Shafarevich group of A is finite, then the Brauer-Manin obstruction is the 

only obstruction to Weak Approximation. 

ProoF'. Waldschmidt [18] proved Conjecture 1.2 for such abelian varieties. | 

COROLLARY 1.5: Let E be a modular elliptic curve over Q. Let L(s) be the 

Hasse-Weil L-function for E over Q. If ords=l L(s) = 1, then the Brauer-Manin 

obstruction to weak approximation on E is the only obstruction. 

Proof Kolyvagin [6] proved that the Tate-Shafarevich group of such an elliptic 

curve over Q is finite, and rankE(Q) = ords=lL(s) = 1. Hence E(Q) is Zariski 

dense in E. Since Mazur's Conjecture 1.2 is true for curves [9, w we can apply 

Proposition 1.3. | 

Notice that  an abelian variety does not satisfy weak approximation, not even 

weak weak approximation [14, p. 30, p. 20]. The proof of Theorem 1.1 uses 

the Tate global and local duality, Serre's result on congruence subgroups and 

Goursat's Lemma. 

The analogue of Conjecture 1.2 in a higher number field does not hold. We 

will construct elliptic curves E over quadratic fields K with positive Mordell-Weil 

rank such that  the topological closure of E(K)  in I'LeM~, E (K , )  is not open. 
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Hence the Brauer-Manin obstruction to weak approximation is not the only one 

for such E. This gives rise to an interesting problem: find new obstructions to 

weak approximation on abelian varieties defined over a number field. 

The weak approximation is usually studied together with the Hasse Principle. 

For complete group varieties, the following result is known. 

THEOREM 1.6: Let V be a smooth variety defined over a number field K such 

that V | F is an abelian variety for some finite extension F of K. Assume 

that [[[(Alb(V) ) is finite, then the Brauer-Manin obstruction for V to the Hasse 

Principle is the only one (Definition 2.1). In other words, if V(K~) ~ 0 for all 

places v of K and there is no Brauer-Manin obstruction, then there exists a 

global point P E V ( K ). 

Proof'. When dim(V) = 1, the statement is a consequence of [8, CH VI, w 

Thm 41.24]. The proof for the general case is similar. | 

ACKNOWLEDGEMENT: I would like to thank Prof. Mazur for suggesting this 

topic, his continuous encouragement and advice. I am also grateful to Prof. 

Serre for mentioning to me the 'Goursat Lemma'. Many thanks to Prof. Colliot- 

Th~l~ne for his detailed comments and corrections, in particular, for the proof in 

w and for the suggestion to consider the number field case. 

2. Preliminaries 

2.1 THE BRAUER-MANIN OBSTRUCTION. Let MK be a complete set of abso- 

lute values of a number field K and M/K (resp. M~)  the set of non-archimedean 

(resp. archimedean) absolute values. For any v E MK, let K~ be the completion 

of K with respect to v. Denote by AK the addle ring of K. Suppose that V is a 

smooth projective variety defined over K and Br(V) is the Brauer group of V/K.  

By local class field theory, there is a natural continuous right-linear pairing [3] 

(1) V(AK) x Br(V) * Q/Z, 

�9 
V 

By global class field theory, the restriction of the pairing (2.1) to V ( K )  x Br(V) 

is trivial. We denote by V(A~) m the left kernel of the above pairing, that is, 

V(A ) Br := {(x.)  e V(AK) I b) = 0, for any b e Br(Y)} .  
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Then V(K) is embedded in V(AK) Br and the closure V(K) of V(K) in V ( A K )  

is contained in V(AK) Br. 

Definition 2.1: Assume that  V(K,)  ~ 0 for all v. We say that  there is no  

B r a u e r - M a n i n  o b s t r u c t i o n  to  t h e  Hasse  Pr inc ip le  if V(AK) B~ ~ 0. We 

say that  t h e  B r a u e r - M a n i n  o b s t r u c t i o n  to  t h e  Hasse  Pr inc ip le  is t h e  

on ly  o b s t r u c t i o n  if the condition V(AK) B~ ~ 0 implies that V(K) ~ 0. When 

V(K) ~ 0, we say that t h e  B r a u e r - M a n i n  o b s t r u c t i o n  is t h e  on ly  ob- 

s t r u c t i o n  to  weak  a p p r o x i m a t i o n  for V if V(K) = V ( A K )  Br. 

LEMMA 2.2: Let W, Y1 and Y2 be metrizable topological spaces. Assume that 

there are two embeddings il : W --* ]I1, i2 : W --+ ]1"2. If  Y2 is compact, then the 

closure of il x i2(W) in ]I1 • ]I2 is projected onto the closure of i l (W) in Y1. 

Proofi Denote by Prl  the projection from Y1 x ]I2 to ]I1. Since Prl  is continuous, 

we obtain  Vrx(i I x i2(W))  C Vrx(i I x i2(W))  = i l (W) .  

For any v E i l(W),  choose a sequence {wn} C W such that  il(wn) --~ v as 

n --* co. Since Y2 is compact, there is a subsequence {wn,} such that  i2(w~,) 

converges to a point y E Y2 as n' -* co. Clearly (v, y) is in il x i2(W), hence v 

is in Pr l ( i l  x i2(W)). | 

LEMMA 2.3 ([9, w / f  the Brauer-Manin obstruction to weak approximation 

is the only obstruction, then the topological closure of V(K) in 1-IveM~ V(Kv) 

is open. 

Proo~ For each archimedean absolute value v, the pairing V(K,)  x Br(V) is 

between the connected components of V(Kv) and Br(V). Hence the image of the 

projection from V(AK) Br to I],eMW V(K,)  consists of connected components, 

therefore open. Since V(K) = V(AK) Br, the conclusion follows from Lemma 

2.2. | 

2.2 TATE DUALITY. For any field F, let Gal(T'/F) be the Galois group of the 

algebraic closure f '  over F. For any Gal(/~/F)-module M, denote by Hi(F, M) 

the set Hi(Gal(["/F), M). Let A be an abelian variety defined over K whose K- 

rational points are Zariski dense in A. Let A t be its dual abelian variety. There 

exist perfect pairings [16], called Tate pairings, 

H~ A) • HI(Kv, A ~) < '>~* Br (g~)  -~ Q/Z ,  for v �9 MfK; 

H~ • HI(K~,A t) < '  >~. Br(Kv) ,  for v E M ~ ,  



Vol. 94, 1996 BRAUER-MANIN OBSTRUCTION 193 

where H~ = A(K~) for v �9 MSK, H~ = A ( K , ) / A ( K , )  ~ for 

v �9 M ~ ,  A(K,)  ~ is the connected component of A(K~) containing the iden- 

tity element. Notice that Br(R)  is isomorphic to Z/2Z and Br(C) is trivial. 

Then we have the following commutative diagram: 

(2.2) A(AK) • H I ( K , A  t) < ' > ,  Q / Z  

(2.3) ( 1 -  [ H~ x H I ( K , A  t) , Q / Z  
vEMK 

where the map ~ is the canonical projection and the pairing (2.2) is defined as 

follows: 

a) = a)v. 

The above pairing is well defined because for all but finitely many v, the image 

of an element a E H I ( K , A  t) in HI(Kv, A t) is zero [10, p. 91]. 

3. P r o o f  of  T h e o r e m  1.1 

For simplicity, we only prove Theorem 1.1 for K = Q. The proof for a general 

number field is similar. We first find the left kernel A(AQ) H1 of pairing (2.2), 

then relate it to the left kernel A(AQ) Br of pairing (2.1). Using the fact that the 

Q-rational points are contained in A(AQ) Br, we conclude the proof. 

3.1. KERNEL OF PAIRING (2.2). For an abelian group M, the profinite com- 

pletion l im~-n  M / n M  is denoted by 21~/, and M* denotes Homcts(M , Q/Z),  the 

group of continuous characters of finite order of M. The Tate-Shafarevich group 

II_I(Q, A) of A over Q is the kernel of the map Hi(Q,  A) ~ @p<c~Hl(Qp, A). 

We denote the closure of A(Q) in A(AQ) ( resp. 1-Ip<~ A(Qp) • A(R)/A(R) ~ 
l-Ip<~ A(Qp), A(R)) by A(Q) (resp. A(Q)sd, A(Q)$, A(Q)o~). 

PROPOSITION 3.1: Assume that the Tate-ShMarevich groups of A and A t are 

finite, then A(Q)$ d = (1-Ip<o~ A(Qp) • A(R  ) / A ( R  )~ H1, i.e. , A( Q) f d is the left 
kernel of the pairing (2.3) in the case K = Q. 

Proof." From Tate duality and the assumption that Ill(A) is finite, we get the 

Cassels-Tate exact sequence [10, p. 102], [17]: 

(1) 0 , A(Q~ " 1-I H~ ,A) r HI(Q, At) * * (ll~(q, At)) * , 0, 
p_<oo 
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where H~ A) = A(Qp) unless p is archimedean, in which case it is equal to 

A ( R ) / A ( R )  ~ and r is induced from the pairing (2.3). From this exact sequence, 

we see that A(Q) is the left kernel of pairing (2.3) and II_](Q,A t) is the right 

kernel. 

By Serre [12] and the fact that A ( R ) / A ( R )  ~ is finite, we see that  A(Q) is the 

topological closure of A(Q) in I]p<~A(Qp) x A(R)/A(R) ~ That is A(Q) = 

A(Q)Id. | 

We will use the diagram involving pairings (2.2) and (2.3) in w to find the 

left kernel of the pairing (2.2). 

PROPOSITION 3.2: Let A be an abelian variety such that the closure of A(Q) in 

A(R) is open. I f  Ill(A) is t~nite, then A(Q) = A(AQ) Hx. 

To prove this proposition, we first prove the following lemma. 

LEMMA 3.3 (Goursat's Lemma): Let G and G ~ be two abelian groups and let F 

be a subgroup o fG  x G ~ t'or which the two projections pr 1 : F ~ G, pr 2 : F --, G ~ 

are surjective. Suppose that there are no proper subgroups N <~ G, N ~ <~ G' such 

that G / N  ~_ G' /N ' .  Then F = G x G'. 

Proof." Let l a  and lc ,  be the identity element of G and G' respectively. Notice 

that the subgroup generated by G x la,  and F, or l c  x G' and F, is the whole 

group G • G', and 

(a x l a , , r ) / r  _~ (a x l a , ) / r A ( a  x 16,), 

(r ,  l a x  G') /F ~_ (1G X G') / s  N(1G X G'). 

Hence G / p  h (rn(a x 1G,)) --~ G'/pr2 (r N(1c x a')). By assumption, we have 

pr(r ~ ( a  x la,)) = a, p r ( r A ( l a  x C')) = a' .  
1 2 

Therefore F = G x Gq | 

Remark: There are more general statements of this lemma which we do not 

need here [2, p. 124], [11, p. 252]. 

Proof of  Proposition 3.2: Suppose that A i R  ) consists of s + 1 connected com- 

ponents, A(R) = U~=o eiA(R) ~ Let Xi = 1-Ip<~ A(Qp) • e iA(R)  ~ 0 < i < s. 

Then Xi  is open and closed in A(Ao).  
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In Lemma 2.2, if we let W = A ( Q ) ~  Xo, Y1 = I-Ip<~ A(Qp), Y2 = A(R), 

we get that the projection of the closed subgroup A(Q) ~ Xo to I-Ip<~ A(Qp) 

is Prf (A(Q) N Xo) = Prf (A(Q) N Xo). Similarly, the projection of A(Q) N Xo 

to A(R) is P r~(A(Q)~Xo) .  By Lemma 3.3, with G = Pr f (A(Q)~Xo) ,G '  = 
Pr~(A(Q) NX0) and F = A(Q) [~Xo, we get that 

A(Q)NXo = Prf(A(q) )Xo)• 

= P r f ( A ( Q ) N X o  ) • ( A ( R ) ~  

(a) Pr~(A(q)fd~')( H A(Qp) • eo)) • A(R) ~ 
p<cx~ 

~) ( I I  A(Qp) • A(R)~ Hi, 
p<c~ 

where Pr~ is the projection from 1-Ip<~ A(Qp) • A(R)/A(R) ~ to I-[p<~ A(Qp). 

The equation (a) uses the assumption that the topological closure of A(Q) is 

open in A(R); (b) comes from Proposition 3.1 and the definition of the pairing 

(2.2). 
For any (xp,x~) e (l-Ip<~ A(Qp) • A(R)) H1 = A(AQ) H1 , let (Xp,2~) be its 

image in the projection to A(Q)f d. Let y E A(Q) be such that ~ = 2~.  Then 

x ~  - y~ �9 A(R) ~ and ((xp - yp),Xoo - y~) �9 (l-Ip<~ A(Qp) x A(R)~ H1 = 

d ( q )  NXo. Hence ((xp), x ~ ) =  ( ( zp -  y p ) , x ~ -  y ~ ) +  ((yp),y~) �9 A(Q). This 

proves that A(AQ) H1 C_ A(Q). Clearly, A(Q) is contained in A(AQ) H~, so is 

A(Q). Proposition 3.2 is proved. | 

3.2. A(AQ) Br C A(AQ) H1. Let G be the Galois group of Q/Q.  Let Div(A) 

denote the group of divisors of A over Q and Div(A) the group of divisors of 

= A • Q. Pic(A) is the group of divisor classes of A, and Pic~ = At(-Q) 

the Picard variety of A over Q. NS(-A) is the N6ron-Severi group of A • Q Q. 

LEMMA 3.4 ([7, Theorem 2, p. 403]): There is an exact sequence: 

0 , (Pic~ c , (Pic(A)) C , NS(A) G ~', HI(G, Pic~ 

(2) r Brl(A)/Bro(A) , Hi(G, NS(A)), 

where 
m 

Brl(A) = Ker(Br(A) --+ Br(A)), 

Bro(A) = Im(Br(Q) , Br(A)). 
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Proof'. 

(3) 0 , Pic~ 

This gives a long exact, sequence: 

0 , (Pic~ a ----~ (Pie(A)) a 

(4) 

Let 7r : 

sequence 

L. W A N G  

For an abelian variety A, we have 

, Pic(A) 

Isr.  J. M a t h .  

E NS(A) , O. 

, NS(A) G ~', Hl(G,  Pic0(~)) 

, HI(G,  Pic(A)) , HI(G, NS(-A)) 

A -~ Spec Q be the structure morphism. From the Leray spectral 

and 

LEMMA 3.5: Let p: Br l (A)  --* Brl(A)/Bro(A)  be the canonical projection. If 

p(a) = r  xp E A(Qp), x ~  E A(R) and e is the identity element in the group 

A(Q), then 

invpa (~) (xp) - invpa (p) (e) = (xp, a~)v 

i n v ~ a ~ ( x ~ )  - inv~a~(e)  = (xo~, a')o~, 

where (., .) is the Tare pairing in w 

E~ = Ker(E 2 , E  ~ 

= Ker(H2(A~t, Gm) , H~ R27r, Gm)) 

= Ker(H2(A~t, Gm) * H2(-A~t, Gm)) 

= Ker(Br(A) . Br(A)) = Br l (d ) ,  

and [1, Ch7, Thm 14] H3(G, Q*) = 0. Hence 

Brl(A)/Bro(A) ~ Hi(G, Pic(A)). 

Replacing Hi(G, Pic(A)) by B r l ( A ) / B r 0 ( A ) i n  (3.4), we get (3.2). 

we obtain an exact sequence 

2 - - *  3 - - *  (5) H (G,Q ) E 2 • HI(G, Pie(A)) . . . . . . .  H ( G , Q ) ,  

where 

HP(Spec Q, RqTr, Gm) ~ HP+q(Aet, Gin), 



Vol. 94, 1996 BRAUER-MANIN OBSTRUCTION 197 

Proof'. The proof is essentially a detailed comparison of the definitions of the 

two pairings. See Manin [7, Proposition 8 c), p. 407]. II 

COROLLARY 3.6: There exist inclusions 

A(AQ) H' D A(AQ) Br~ _D A(AQ) Br. 

Proof." Suppose that x -- ( (xv) ,x~)  �9 A(AQ) Brl. For any a' �9 Hl(G, ftt), 

r �9 Brl(A)/Bro(A).  Since p is surjective, there exists a �9 Br l (A) ,  such 

that p(a) = ~b(a'). By Lemma 3.5, (x,a ')  -- (x, a) = 0. Hence x �9 A(AQ) Hi. 

This proves the first inclusion. Since Br l (A)  C_ Br(A),  the second inclusion is 

obvious. 1 

Remark: Notice that both pairings (2.1) and (2.2) come from class field theory. 

They are compatible [7, p. 407]. We can give an explicit formula for the map X 

in (3.5). First [7, p. 403], 

Br l (A)  = Ker (H2(Q,Q(A)  *) , H2(Q, Div(A XQ Q))). 

Let b e Br l (A)  and f = (fs,t) e Z2(Gal(K/Q), K(A)*) representing b, where 

K is a finite normal extension of Q, then we have f = OD for some D = 

(08) �9 CI(Gal(K/Q),Div(A XQ g ) )  C_ CI(Gal((~/Q),Div(A)) .  Then )/(f)  

is the cohomology class [D] in HI(Gal( (~/Q) ,  Pic(A)) [3, p. 469], [7, p. 410]. 

3.3. CONCLUSIONS. From Proposition 3.2 and Corollary 3.6, we know that 

under the assumption of Theorem 1.1, we have 

A(AQ) Br C A(AQ) Hi= A(Q). 

Obviously, A(Q) _c A(AQ) Br. Hence 

A(AQ) Br = A(AQ)HI= A(Q). 

This finishes the proof of Theorem 1.1. 

4. B r a u e r - M a n i n  obs truct ion  is not  the  only  obs truc t ion  over K 

One naturally asks whether there is a generalization of Conjecture 1.2 to the 

number field case. 
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QUESTION 1: Let V be a smooth irreducible algebraic variety defined over a 

number field K. Suppose that V(K)  is Zariski dense in V. Is the topological 

closure of V (K)  in 1-Iv V(Kv) open, where v runs through all the real absolute 

values? (or more generally, v runs through all the archimedean absolute values). 

If V satisfies weak approximation, or if not, but the Brauer-Manin obstruction 

is the only obstruction to weak approximation for V, then the answer to this 

question is affirmative (cf. Lemma 2.1 and [9, w But in general we do not 

have an affirmative answer to the above question. We give examples of elliptic 

curves. 

PROPOSITION 4.1: Let E be an elliptic curve defined over Q with positive 

MordeH-Weil rank. Suppose that there exists a real quadratic number field K 

such that the Mordell-Weil rank of E over K is the same as the Mordell-Weil 

rank orE over Q. Then the topological closure orE(K)  in 1-[veM~ E(Kv) is not 

open. Hence the Brauer-Manin obstruction to weak approximation is not the 

only obstruction. 

Proof: Since E(Q)  diagonally imbedded in l~veMW E(K , )  is not dense in the 

identity component, and E(Q)  is a subgroup of finite index in E(K) ,  hence E(K)  

is not dense in the identity component. | 

Explicit examples can be found using Cremona's book [5]. 

Example 1: Let E be the elliptic curve whose Weierstrass model is 

y2 = x 3 _ 50x - 125. 

Let K be the the real quadratic field Q(v/'i--0). The quadratic twist of E by 10 is 

E(10): y2 _-- x 3 _ 8 x  - -  8 .  

Then rank E(K)  = rank E(Q)  = 1, and rank E(I~ = 0. 

We also have examples for imaginary quadratic fields. 

Example 2: Let E be given by 

y 2  _-- X 3 _ 8 X  --[- 8 .  

Let K be the imaginary quadratic field Q(vrZ]-). The quadratic twist of E by 

- 1  is 

E(-1): y2 = x 3 _ 8x - 8. 

Then rank E(K)  = rank E(Q)  = 1 and rank E(-1)(Q) = 0. 
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QUESTION 2: Let V be a smooth irreducible algebraic variety defined over a 

number field K.  Suppose that V ( K )  is Zariski dense in V.  Let ResK/Q denote 

the Well restriction of scalars. Is ( ReS K / Q V ) ( Q ) Zariski dense in ReS K / Q V ? 

The answer is not always affirmative. Again we use the above examples of ellip- 

tic curves. (ResK/QE)(Q) is canonically identified with E ( K )  and 

(ReSK/QE)(R) is isomorphic to 1-IveM~ E(Kv) .  

References  

[1] M. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1968. 

[2] N. Bourbaki, l~ldments de Mathdmatique, Algbbre I, Hermann, Paris, 1970. 

[3] J.-L. Colliot-Th61~ne et J.-J. Sansuc, La descente sur les varidtds rationnelles, I1, 

Duke Mathematical Journal 54 (1987), 375-492. 

[4] J.-L. Colliot-Th61~ne et J.-J. Sansuc, La descente sur une varidtd rationnelle ddfinie 

sur un corps de hombres, Comptes Rendus de l'Acad6mie des Sciences, Paris 284 

(1977), 1215-1218. 

[5] J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University 

Press, Cambridge, New York, 1992. 

[6] V.A. Kolyvagin, On the Morde11-Weil group of modular elliptic curves, Proceedings 

of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. 

Soc. Japan, Tokyo, 1991, pp. 429-436. 

[7] Y. Manin, Le groupe de Brauer-Grothendieck en gdomdtrie diophantienne, Actes, 

Congr~s intern, math. 1 (1970), 401-411. 

[8] Y. Manin, Cubic Forms-Algebra, Geometry, Arithmetic, North-Holland, Amster- 

dam, 1986. 

[9] B. Mazur, The topology of rational points, Journal of Experimental Mathematics 
1 (1992), 35-45. 

[10] J.S. Milne, Arithmetic Duality Theorems, Academic Press, New York, 1986. 

[11] K.A. Ribet, On l-adic representations attached to modular forms, Inventiones 

mathematicae 28 (1975), 245-275. 

[12] J.-P. Serre, Sur les groupes de congruence des varidtds abdliennes, 1, 11, I. Izvestiya 

Akademii Nauk SSSR, Ser. Mat. 28 (1964), II. 35 (1971), 731-737. 

[13] J.-P. Serre, Local Fields, GTM 67, Springer-Verlag, New York, 1979. 

[14] J.-P. Serre, Topics in Galois Theory, Notes by H. Darmon, Jones and Bartlett 

Publishers, Boston, 1992. 



200 L. WANG Isr. J. Math. 

[15] J. Silverman, The Arithmetic of Elliptic Curves, GTM 108, Springer-Verlag, New 

York, 1986. 

[16] J. Tate, WC-groups over p-adic fields, S~minaire Bourbaki, expos~ 156, 1957. 

[17] J. Tate, Duality theorems in galois cohomology over number fields, Proceedings of 

the International Congress of Mathematicians, Stockholm, 1962, pp. 288-295. 

[18] M. Waldschmidt, Transcendental numbers and functions of several variables, in 

Advances in Number Theory (F.Q. Gouv~a and N. Yui, eds.), Oxford Science 

Publ., 1993, pp. 67-80. 


